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Stability of Nonstationary States of Classical, 
Many-Body Dynamical Systems 

G. Grinste in  ~ 

We summarize recent arguments which show that for a broad class of classical, 
many-body dynamical model systems with short-range interactions (such as 
coupled maps, cellular automata, or partial differential equations), collectively 
chaotic states--nonstationary states wherein some Fourier amplitude varies 
chaotically in time--cannot occur generically. While chaos occurs ubiquitously 
on a local level in such systems, the macroscopic state of the system typically 
remains periodic or stationary. This implies that the dimension D of chaotic 
("strange") attractors must diverge with the linear size L of the system like 
D ~ (L/~) a in d space dimensions, where ~ ( < c~ ) is the spatial coherence length. 
We also summarize recent work which demonstrates that in spatially isotropic 
systems that have short-range interactions and evolve (like coupled maps) in 
discrete time, periodic states are never stable under generic conditions. In 
spatially anisotropic systems, however, short-range interactions that exploit the 
anisotropy and so allow for the stabilization of periodic states do exist. 

KEY WORDS:  Chaos; periodicity; attractor dimension; dynamical systems. 

1. I N T R O D U C T I O N  

A large class of classical many-body dynamical systems (e.g., 
Rayleigh-Benard convection, Taylor-Couette flow, cellular automata) 
evolve in time according to equations that possess either a discrete or con- 
tinuous time-translation invariance. It is generally taken for granted that 
such systems can, even in the presence of noise, exhibit stable, non- 
stationary states--stable states wherein this invariance is spontaneously 
broken--so that some spatial Fourier amplitude is nonstationary (i.e., con- 
tinues to vary with time even in the asymptotically long-time limit). In the 
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surface wave experiments of Ciliberto and Gollub, (~) e.g., the bottom of a 
vessel containing fluid is oscillated in time at fixed frequency. Sufficiently 
vigorous oscillations make the free surface of the fluid unstable with respect 
to the formation of surface standing waves of appropriate wavelength. The 
amplitudes of these waves are observed to vary either chaotically in time or 
periodically, with periods different from the driving frequency. Similar 
phenomena are observed in many other experiments. 2 

From the theoretical point of view, evidence for the existence of such 
symmetry-breaking nonstationary states comes almost entirely from mean- 
field theories--theories that replace the infinite number of interacting 
modes of a many-body dynamical system in the thermodynamic limit by a 
finite (typically small) number. 3 The behavior can then be analyzed, 
either analytically or numerically. (The Lorenz equations, a finite-mode 
approximant to the problem of convection, provide perhaps the best- 
known example of this stategy. (6)) Nonstationary behavior of the 
amplitudes of the modes retained is a common result of the procedure, and 
is typically taken to imply the existence of stable nonstationary states in the 
original untruncated model. 4 

In this paper we consider some of the effects of the fluctuations 
omitted in mean-field treatments. We show how, under a broad range of 
conditions, these fluctuations actually destabilize the nonstationary states 
predicted by mean field theory. We first summarize (Section 2) recent 
arguments (8) which imply that, for a large class of models, collectively 
chaotic states--nonstationary states wherein some Fourier amplitude 
varies chaotically in time--simply cannot occur generically in systems with 
short-range interactions. (This is not to say that chaos cannot occur in 
many-body dynamical systems; such an assertion would be absurd. The 
claim is only that, while chaos can and does occur ubiquitously on a local 
level, the macroscopic  state of typical many-body systems that are locally 
chaotic is periodic or stationary.) Then (Section 3) we point out a simple 
consequence of this result, which bears directly on the interpretation of 
experiments designed to measure the dimension of chaotic ("strange") 
attractors: The absence of collective chaos implies that attractor dimen- 
sions D must diverge with the linear size L of the sample like D ~ (L /~ )  a, 
where d=  1, 2, or 3 is the system's spatial dimension and 3 (<oe)  its 

2 See, e.g., Giglio e t  al. 12) for measurements  on Rayleigh-Benard convection and Brandstater 
and Swinney ~3~ for measurements  on Taylor vortex flow. 

3 For example, Ciliberto and Gollub ~4~ and Meron and Procaccia 15~ discuss finite mode 
approximants  to the surface wave problem of ref. 1. 

4Curry et  al. ~7) study the effect of increasing the number  of modes n in finite-mode 
approximants  to Rayleigh-Benard convection. In two dimensions they find that  the chaotic 
states that occur for small n disappear as n increases. 
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spatial coherence length. Finally (Section 4), we summarize recent work ~9~ 
which demonstrates that unless special care is taken in constructing the 
interactions of model many-body systems, even periodic states cannot be 
stabilized under generic conditions: In spatially isotropic systems that have 
short-range interactions and evolve (like coupled map lattices or cellular 
automata), in discrete time, periodic states with periods greater than two 
are never stable generically. In spatially anisotropic systems, however, 
short-range interactions that exploit the anisotropy and so allow for the 
stabilization of periodic states do exist. The generalization of these 
arguments about temporal periodicity to continuous-time systems is more 
complicated, and will be reported elsewhere. 

2. C O L L E C T I V E L Y  C H A O T I C  S T A T E S  

Let us briefly recall the argument of ref. 8 for the absence of collective 
chaos in a broad class of many-body dynamical systems under generic 
conditions. Imagine a general many-body dynamical system described by 
scalar variables x(r, t) which take on real values roughly confined to the 
interval O<~x(r,t)<~Ax, say. 5 The system evolves according to some 
dynamical rule (e.g., partial differential equation), which for the moment is 
assumed noiseless (i.e., deterministic) and local (i.e., has no long-range 
interactions). Imagine that a particular variable x(r~, t) is perturbed by an 
infinitesimal amount c5xo at some time t = 0 ,  say, and then allowed to 
evolve without further external interference. If the system is in the chaotic 
regime, then the value of x(r~, t) at large subsequent times t differs from 
the value it would have had in the absence of the perturbation by an 
amount 6xt given by 6x, ~ 6Xo exp(2t), where )~ is some positive, Liapunov 
exponent which characterizes the sensitivity to perturbations or initial con- 
ditions of the chaotic state. ~12) When t is so large that 6x, is of the order of 
the maximum range ~x of allowed values of x(r, t), i.e., when 

t ~  t* - (1/2) ln(Ax/hXo) (1) 

x(rL, t) has been completely "dephased" by the perturbation, in that it has 
no memory of the value it would have achieved in the absence of ~Xo. Now 
imagine a second variable x(r2, l) at point r 2 separated from r~ by distance 
R. The locality of the rule implies that information about the value of 
x(r 1, t) cannot be transmitted to other parts of the system faster than with 
some maximum velocity, c say. (In a cellular automaton with a nearest 

5The coupled map lattices considered in ref. 8 and by many other authors (see, e.g., 
Kaneko I~~ and Keeler and Farmer ~11) are particularly convenient examples of such many- 
body dynamical systems. 
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neighbor rule, e.g., c would be one lattice spacing per time step.) Until time 
t ~ R/c, therefore, the variable x(r2, t) evolves in ignorance of the fact that 
x(rl, t) has experienced a perturbation. Thus, if R/c> t*, then x(rl, t) is 
already dephased before x(r2, t) finds out about the perturbation. Hence, 
x(r2, t) has no knowledge of the value of x(rl,  t); the perturbation has 
decorrelated the two variables. Similarly, of course, it decorrelates x(r~, t) 
from any variable distant from rl by more than the "coherence length" 
defined by 

= (c/2) ln(dx/r (2) 

where r; ~ 6Xo measures the strength of the perturbation. 
In realistic many-body dynamical systems, noise of any type (e.g., ther- 

mal) provides a steady source of such decorrelating perturbations. It is 
important to note, however, that even in noiseless systems, any random- 
ness in initial conditions will likewise provide a perfectly adequate 
decorrelating effect, i.e., a nonzero a.  We conclude, therefore, that under 
generic (i.e., random) initial conditions, not even deterministic dynamical 
systems can, if they are chaotic, sustain spatial correlations over distances 
longer than ~ of Eq. (2). 

The finiteness of spatial coherence lengths in locally chaotic systems 
implies the nonexistence of "collective chaos'--temporal chaos in the 
amplitudes of spatially extended (e.g., Fourier) modes of the system. The 
point is that such amplitudes involve spatial averages over the entire 
system (i.e., incoherent averages over many essentially uncorrelated regions 
of linear size ~); such averages cannot produce a chaotically varying result. 
Naively one would expect them to give rise only to stationary, or time- 
independent, answers. This is often the case. We pointed out in Ref. 8, 
however, that if the individual variables move periodically between bands 
of allowed values, the precise value achieved within each band being a 
chaotic function of time, ~12'13) then the incoherent averages can produce a 
periodic result which reflects the regular periodic motion between bands. 
Thus, the behavior of the locally chaotic system on the macroscopic level is 
either stationary or periodic, not chaotic. 

It is important to apply this result carefully to finite-size systems. Only 
in the thermodynamic limit is the averaging away of chaotic behavior in 
Fourier amplitudes complete; in any system with finite linear size L these 
amplitudes (appropriately normalized) will show chaotic variations 
roughly of OE(L/~) -'t/2] in d dimensions. Obviously when ~ of Eq. (2) is 
comparable to or greater than L, the system will behave chaotically even 
on its largest length scale. (In ref. 8 we showed an explicit numerical 
example of this for coupled map lattices of varying size.) The regime ~ >~ L 
is readily achieved in practice: Eq. (2) shows that ~ grows without bound 



Stability of Nonstationary States 807 

as 2 decreases. Values of 2 can be very small, particularly just above the 
onset of chaos, where many measurements are performed. (In the period- 
doubling route to chaos, e.g., 2 goes continuously through 0 at the onset of 
chaos, O4"1s) and so can be arbitrarily small.) If the velocity c with which 
information propagates is large, moreover, then even moderately large 2's 
can give rise to large ~'s, and hence to apparent collective chaos in finite 
samples. Fluid mechanical systems present an additional complication, in 
that the typical time scales (and hence typical values of 2) can vary inver- 
sely with L. (16)'6 Hence, correlation lengths presumably obey a scaling 
relation something like ~ ~ L f ( R )  for some function f R being a dimen- 
sionless quantity such as a Reynolds or Rayleigh number, (t6) depending on 
the system at hand. In this case, one's ability to probe the regime L >> 4, 
where chaos on the largest length scales averages away, depends on f ( R )  
becoming vanishingly small as R increases. If this is the case, then, since R 
typically increases with L, increasing L with the other parameters fixed 
suffices to make L/~ large. 

3. A T T R A C T O R  D I M E N S I O N S  

The finiteness of ~ also implies that any system of linear size L > ~ in d 
space dimensions contains roughly (L/~) a effectively independent degrees of 
freedom. It is precisely this quant i ty-- the number of independent degrees 
of freedom contributing to the chaotic evolut ion--that  each of the several 
different definitions of attractor dimension D attempts to quantify (see, e.g., 
ref. 17, and references therein). We conclude that D must blow up roughly 
like (L/~) a as L becomes large]  

It is easy to understand the phenomenon of "low-dimensional chaos," 
i.e., very small attractor dimensions measured in chaotic many-body 
systems, (18) in this context. Low-dimensional chaos occurs when r is com- 
parable to the system size L, a situation which we have just seen is readily 
realizable in practice, either because 2 is small or c large. Except in 
situations where ~ increases linearly with L, therefore, low-dimensional 
chaos is a consequence of insufficiently large sample size: Increasing L 
beyond ~ will result in D increasing like (L/~) a, as in the experiments cited 
in footnote 7. 

6 We are grateful to P. C. Hohenberg for a helpful comment on this point. 
7 Recent numerical experiments of Y. He and C. Jayaprakash (unpublished) on two-dimen- 

sional coupled lattice maps in the chaotic regime show attractor dimensions growing like L 2 
with increasing system size L, consistent with the general expression D ~ (L/~) d in d dimen- 
sions. 
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4. PERIODIC STATES 

Let us now turn to periodic states, restricting ourselves to systems that 
evolve in discrete time according to local, dynamical rules with (discrete) 
time-translation invariance. We try to make clear why, in the presence of 
any noise, stabilizing collective periodicity is difficult, and to state the con- 
ditions under which it is possible, referring the reader to ref. 9 for details 
and specific examples. 

The difficulty inherent in the stabilization of periodic states is easily 
understood by analogy to the nucleation and growth of the unique stable 
phase in the classical Ising model in a small magnetic field at low but non- 
zero temperature. Let us therefore briefly review the familiar phenomenon 
of nucleation and growth (see, e.g., ref. 19, and references therein): Suppose 
that the field points in the up direction; thus, we expect the single stable 
phase of the model to have positive magnetization. Suppose, however, that 
we prepare the system in an initial condition wherein all spins point 
downward, and let the system evolve according to some stochastic 
dynamical rule that satisfies detailed balance for the Ising Hamiltonian. ~2~ 
The system will, due to the thermal noise, nucleate droplets of the favored 
up spins. If the temperature T is low, then initially the droplets will be 
small and rather far apart. It is well known that the evolution of an 
isolated droplet with radius R (Fig. 1) is described in any dimension by the 
phenomenological equation ~21'22) 

dR/dt = - a / R  + h (3) 

Fig. 1. Droplet with radius R of Ising up spins immersed in a sea of down spins at low tem- 
perature. 
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where a is roughly the surface tension, and h is proportional to the 
magnetic field. The first term on the right side, proportional to the cur- 
vature, l/R, represents the tendency of the droplet to shrink in response to 
the surface tension, thereby reducing the area of the boundary (domain 
wall) between the up and down phases. The second term, h, is the average 
velocity with which an infinite, flat domain wall between the two phases 
translates. [To see this, let R grow very large in Eq. (3), whereupon the left 
side represents the speed with which an essentially flat wall moves, and the 
right side is simply h.] In this example, h is positive, since we have assumed 
that the field points up, favoring growth of the droplet. It is well known (or 
readily seen by inspection) that Eq. (3) describes the respective growth or 
shrinking of droplets whose radius R is larger or smaller than a critical size 
Rc =- a/h. Eventually [the time required being of order exp(~rR~- 1/T) in d 
dimensions], the system will nucleate a finite density of spin-up drops with 
radii greater than Re. Equation (3) shows that the drops will then expand 
linearly in time, thereby replacing the spin-down initial state by the unique, 
stable, equilibrium state with positive magnetization. So long as there 
is any noise, the system attains this stable state in the long-time limit 
regardless of the initial conditions. 

The crucial point is that the field--however small--favors the spin-up 
state, thus breaking the up-down symmetry of the zero-field problem. The 
inequivalence of the spin-up and spin-down states is manifest in the finite 
velocity [h in Eq. (3)] with which a flat interface between the two states 
translates. On the coexistence curve, h = 0, of the Ising model at low tem- 
perature, the up and down spin states become equivalent. In consequence, 
flat interfaces do not translate at all [-see Eq. (3) with h = 0  and R,-~ oe]. 
Finite droplets of any initial radius Ro and either sign shrink to zero like 
R2= R 2 - 2 a t  under the action of the surface tension. Thus, the critical 
radius R c is infinite, consistent with the existence of two equivalent, stable, 
broken-symmetry states of the system with equal and opposite 
magnetizations. Starting from an initial condition consisting predominantly 
of up (down) spins, one achieves in the long-time limit the stable 
equilibrium state with positive (negative) magnetization. We emphasize 
that for systems described, like the Ising model, by a Hamiltonian, this is 
possible only on the coexistence curve--i.e., on a set of zero measure of the 
Ising phase diagram in the h-T plane. The generic situation ( h e 0 )  is 
characterized by nucleation and growth of a unique stable state. (22) 

Let us now return to the problem of stabilizing periodic states, first 
restricting ourselves to spatially isotropic systems. Imagine that we have 
suceeded in constructing a (discrete-time) dynamical rule which has broken 
its time-translation invariance by producing, say, a stable 3-cycle. That is, 
imagine that some Fourier amplitude, say the amplitude of the k = 0 mode 
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MI M2 M3 Mi 

Fig. 2. A periodic 3-cycle state at four successive time steps. At the first, second, and third 
time steps, most of the system variables assume the values M~, M2, and M3, respectively. At 
the fourth step, M~ occurs again. 

(the spatial average M of the system's dynamical variables), assumes three 
distinct values, M~, M2, and M3, say, in regular periodic fashion at con- 
secutive time steps (Fig. 2). The rule is assumed noisy, so that no single 
variable will assume this precise, repeating sequence of values; only the 
spatial average (or, equivalently, the noise-averaged value of any given 
variable) in the thermodynamic limit is truly periodic. 8 

Suppose that we start the system off in an M1 initial state, and 
monitor its evolution at every third time step thereafter. If the evolution is 
genuinely periodic, then the system viewed at three-step intervals should 
look stationary, i.e., the M1 state should persist indefinitely. In the presence 
of any (Gaussian or other unbounded 9) noise, the system will of course 
nucleate droplets of M2 in the infinite sea of Ma. The stability of the 
periodic time dependence is determined by considering the dynamics of 
such droplets, whose evolution (monitored at every third step), proceeds (22) 
according to the same phenomenological equation (3) that describes drops 
in the Ising model. Again the term on the right side of (3) proportional to 
the droplet's curvature, l/R, expresses the tendency of the droplet to shrink 
and so reduce the length of the domain wall between the phases; 
represents the analogue, for nonequilibrium systems, of surface tension. 
The second term, h, is again the average velocity with which an infinite, flat 
domain wall between the two phases translates in the course of three steps. 
As in the Ising model, this term is a measure of the inequivalence of the 
states M1 and M2. The main point is that, again as in the Ising model, the 
generic situation is the one where there is no symmetry guaranteeing the 
equivalence of M1 and M2, i.e., where h is nonzero in Eq. (3). While it is 
possible to construct rules with a symmetry that ensures that walls do not 
translate on average (an example is given in ref. 9), the typical case, and 
certainly the overwhelmingly probable one encountered in practice, is the 
one where the states are inequivalent. (It is easy to check, e.g., for the 

8 Refs. 8 and 9 contain more detailed discussions of periodic states in the context of specific 
dynamical systems, namely coupled map lattices and cellular automata, respectively. 

9 Noise of bounded amplitude may be insufficient to nucleate droplets, but such noise is rather 
unphysical. In equilibrium statistical mechanics, e.g., finite systems with bounded noise can 
exhibit broken symmetries, an impossibility with the more realistic unbounded noise. 
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periodic states studied numerically in the coupled map lattices of ref. 8, that 
no such symmetry is present. 1~ 

Let us assume for the moment that h is positive, so that M2 is favored 
over M1. Then, just as in the Ising model, the system eventually nucleates 
droplets larger than the critical size Rc =-a/h, which expand to replace the 
state M1 by M2. After sufficiently long time, therefore, the state M~ fails to 
occur at every third time step. In other words, the assumed temporally 
periodic state of the system is not stable, but rnetastable. One might think 
that the M~ state which supplants MI simply persists indefinitely (still 
viewed at each third time step), thereby implying that the system is still in 
a stable 3-cycle, but shifted in phase from the initial condition. This is not 
the case: Since in one time step MI turns into M2, and M2 turns into M3, 
the instability of M 1 with respect to droplets of M2 implies the instability of 
M2 with respect to droplets of M 3 (and also the instability of M 3 to 
droplets of M~). Thus, starting as we did from a state of pure M~, one finds 
that large droplets of M2 begin to grow and supplant M1 after many 3-step 
cycles; but M2 itself then starts being supplanted by M 3 ,  etc. After many 
cycles, therefore, one expects to find a mixture of equal parts of M1, M2, 
and M 3 in the system at any given time. In other words, the overall spatial 
average M of the variables in the system ceases to vary with time, and the 
behavior of the system is stationary, not periodic. 

Note that the instability of the periodic state does not depend on our 
assumption of positive h in Eq. (3) for the evolution of drops of M2 in a sea 
of M1. If h is in fact negative, so that M~ is favored over M2, then droplets 
of M~ immersed in a sea of M2 evolve according to Eq. (3) with h positive; 
we can simply repeat the arguments above for droplets of this type, with 
the same result, namely the destabilization of the assumed periodic state. 
Thus, the nucleation and growth mechanism of Eq. (3) destroys collective 
periodicity under all generic conditions. It is clear from (3), however, that a 
periodic state can readily be made metastable, its lifetime roughly given by 
the time (a function of the noise, h, and ~r) required for the nucleation of 
droplets of critical size. This time grows exponentially with Re. If the 
velocity h is small, so that Rc is large, the lifetime of the periodic state can 
be very long indeed. ~1 

~0 Models commonly taken as prototypes for studying the onset of periodic behavior, such as 
the Brusselator] TM also lack this symmetry, as do typical experimental systems that exhibit 
periodic states. 

i~ We now believe, e.g., that the periodic states observed numerically in the coupled maps of 
ref. 8 (on samples of up to 200 x 200, and hundreds of thousands of updatings per spin), 
were actually metastable rather than stable. By measuring the rate [h in Eq. (3)] at which 
flat domain walls move in the 4-cycle regime of that reference, we estimate that the critical 
droplet size for destruction of the periodicity is of O(3000), far beyond our numerical grasp. 
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Only by imposing a symmetry that guarantees the equivalence of M1, 
M2, and M3, or by making special parameter choices that guarantee that 
flat domain walls move with zero velocity (9) (h=0) ,  can one stabilize 
periodic states in (3). This is analogous to positioning oneself on the 
coexistence curve of the Ising model, where R,, = 0% and droplets of any 
initial radius Ro shrink like R2=  R2o-2at. 

Though we have discussed only 3-cycles, it seems clear that similar 
arguments prohibit the existence of stable cycles of any arbitrary length in 
isotropic, generic, discrete-time systems with short-range interactions. The 
single exception is the 2-cycle, where the fact that the two states, MI and 
M 2 say, exchange identities at each time step implies that a flat domain 
wall separating them cannot translate with nonzero velocity. (8) Thus, 
unlike higher cycles, the 2-cycle has an effective symmetry that ensures the 
vanishing of h in Eq. (3), and so allows the stabilization of the period-2 
state, even under generic conditions. 

In writing Eq. (3) and so arguing against stable cycles with periods 
longer than 2, we implicitly exploited the assumed spatial isotropy of the 
system. We now show how systems (e.g., on a lattice) without isotropy can 
exhibit stable states with arbitrary periodicity. (gJ Imagine that the 3-cycle 
system described above is defined on, e.g., a square lattice in two dimen- 
sions. While it remains true that fiat domain walls separating any two of 
the phases M~, M2, and M3 must translate under generic conditions, the 

MI 

M2 

MI 

M2 

MI I ( 3 _ L  M2 

MI 

(a) 

M2 

(b) 
Fig. 3. Translation, in each 3-step cycle, of flat domain walls separating a domain with 
variable value MI from one with value M2. Domains oriented (a) parallel or (b) at 45 ~ to the 
lattice axes translate to favor (a) M 2 over MI or (b) M1 over M2. 
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sense in which they translate can depend on their orientation with respect 
to the lattice axes. It is easy, e.g., to construct rules (a specific example is 
given in ref. 9) wherein walls between M~ and M2 oriented parallel (at 45 ~ 
to) the axes translate to favor M2 over M~ (M1 o v e r  M2) , as in Fig. 3. For 
finite droplets, this has the effect shown in Fig. 4: A droplet of M1 in a sea 
of M2 grows fastest along those parts of its boundary oriented at 45 ~ to the 
lattice axes. Thus, it distorts into a rectangular shape whose boundaries are 
oriented along the lattice directions. Since domain walls with lattice-axis 
orientation move to favor M2, the droplet then shrinks and vanishes! (For 
large droplets this situation can be described phenomenologically by the 
equation dR/dt = - h ,  with h positive. Thus droplets shrink linearly with 
time.) Similarly, a droplet of M 2 in a sea of M~ distorts so that its boun- 
daries orient at 45 ~ to the axes, whereupon it also shrinks and disappears. 
Thus, systems with appropriate rules can take advantage of spatial 
anisotropy to ensure that droplets created by thermal fluctuations do not 
grow and destroy the temporal periodicity. Such systems can therefore 
exhibit stable 3-cycles, and by obvious generalization, higher cycles as well. 

Experimentally realizable dynamical (e.g., fluid mechanical) systems 
typically occur in the continuum rather than on a lattice. However, the 
stabilization mechanism described above requires only that there be some 

M2 

MI 

M2 M2 

(3) 
MI 

(3) ~- [ ~  

(3) 

(a) 

Mf 

-<5 
(b) 

Mi 

Fig. 4. (a) Droplet of M~ in a sea of M 2 seen  at 3-step intervals. The droplet distorts into a 
square oriented with lattice axes and then shrinks. (b) Droplet of M 2 in a sea of M1 seen at 
3-step intervals, The droplet distorts into a square oriented at 45 ~ to the lattice axes and then 
shrinks. 
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special direction in the problem, so that domain walls oriented in different 
directions need not translate in the same sense. Such anisotropy is a 
ubiquitous feature of (even fluid mechanical) systems that have periodic 
states. In Rayleigh-Benard systems, e.g., the occurrence of periodic states 
occurs only at Rayleigh numbers above the convective instability where the 
system first develops rolls. (2) The axes of the rolls define a preferred 
direction which the system chooses spontaneously, thereby breaking its 
spatial isotropy. The system could, in principle, then make use of 
anisotropy as described above to produce stable periodic states. (We 
emphasize, however, that the details of the stabilization of periodic states 
have not yet been fully worked out for continuous-time systems, though we 
suspect the main results are similar to the discrete-time situation studied 
here.) 

It is important to note that only certain rules can successfully exploit 
spatial anisotropy to stabilize periodic phases. (The general rquirements 
are made clear in ref. 9.) For  example, we now believe that the periodic 
states we observed numerically in the coupled map lattices of ref. 8 are not 
genuinely stable, but rather metastable with a lifetime orders of magnitude 
larger than the longest computer runs currently feasible (see footnote 11). 
Similarly, metastable periodic states may readily be mistaken for stable 
ones in real experiments. It is interesting to ask, e.g., whether the periodic 
states observed in Rayleigh-Benard and other systems use the above 
mechanism to achieve true stability, or whether they are simply metastable, 
with lifetimes long compared to typical measuring times. We have more to 
say about distinguishing between these two possibilities elsewhere. 
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